#### Professor K

#### Intermolecular forces

#### Inter vs. intra

- We've studied chemical bonds which are INTRAmolecular forces...
- We now explore the forces between molecules, or INTERmolecular forces which you might rightly assume to be weaker since they are over longer distances



#### Inter vs. intra (cont'd)

- We did discuss the ideal gas law earlier, but what MAKES something a gas?
- Space between molecules determines state, but what determines the spacing?
- Intramolecular forces (bonds) govern molecular properties such as molecular shape/geometry around atoms and dipole moments.
- Intermolecular forces determine the macroscopic physical properties of liquids and solids such as melting points, freezing points, and other physical properties.

#### States of matter compared



Copyright © 2005 Pearson Prentice Hall, Inc.

#### Vaporization

- Going from a liquid to a gas
- Requires energy (endothermic-  $\Delta H_{vap}$  is a POSITIVE number since energy is being supplied to the system FROM the surroundings)
- Reverse is condensation, which gives off energy (exothermic- ΔH<sub>cond</sub> is a NEGATIVE number since energy is coming OUT of the system into the surroundings)
- Enthalpy is a function of state: therefore, if a liquid is vaporized and the vapor condensed at constant temperature, the total  $\Delta H$  must be zero:

$$\Delta H_{vap} + \Delta H_{cond} = 0$$
$$\Delta H_{cond} = -\Delta H_{vap}$$

- The vaporization-condensation cycle is the basis of refrigeration and air conditioning
- The study of energy changes involved in this phenomenon is called calorimetry

#### Table 11.1 Some Enthalpies (Heats) of Vaporization at 298 K<sup>a</sup>

10

| Liquid                                      | $\Delta m{H}_{ m vapn}$ , kJ/mol |  |
|---------------------------------------------|----------------------------------|--|
| Carbon disulfide, CS <sub>2</sub>           | 27.4                             |  |
| Carbon tetrachloride, CCl <sub>4</sub>      | 37.0                             |  |
| Methanol, CH <sub>3</sub> OH                | 38.0                             |  |
| Octane, $C_8H_{18}$                         | 41.5                             |  |
| Ethanol, CH <sub>3</sub> CH <sub>2</sub> OH | 43.3                             |  |
| Water, $H_2O$                               | 44.0                             |  |
| Aniline, $C_6H_5NH_2$                       | 52.3                             |  |

<sup>a</sup>  $\Delta H_{\text{vapn}}$  values are somewhat temperature-dependent.

Copyright © 2005 Pearson Prentice Hall, Inc.

#### Example

## How much heat, in kilojoules, is required to vaporize 175 g methanol, $CH_3OH$ , at 25 °C?

#### **Example An Estimation Example**

Without doing detailed calculations, determine which liquid in Table 11.1 requires the greatest quantity of heat for the vaporization of 1 kg of liquid.

#### Vaporization (cont'd)

 Vapor pressure- the partial pressure exerted by the vapor when it is in DYNAMIC EQUILIBRIUM with a liquid at constant temperature vaporization Liquid \_\_\_\_\_ Vapor

condensation

BOILING point- occurs when vapor pressure
 atmospheric pressure

## Liquid-vapor equilibrium



| Temperature,<br>°C | Pressure,<br>mmHg | Temperature,<br>°C               | Pressure,<br>mmHg      | Temperatures<br>℃ | Pressure,<br>mmHg |
|--------------------|-------------------|----------------------------------|------------------------|-------------------|-------------------|
| 0.0                | 4.6               | 29.0                             | 30.0                   | 93.0              | 588.6             |
| 10.0               | 9.2               | 30.0                             | 31.8                   | 94.0              | 610.9             |
| 20.0               | 17.5              | 40.0                             | 55.3                   | 95.0              | 633.9             |
| 21.0               | 18.7              | 50.0                             | 92.5                   | 96.0              | 657.6             |
| 22.0               | 19.8              | 60.0                             | 149.4                  | 97.0              | 682.1             |
| 23.0               | 21.1              | 70.0                             | 233.7                  | 98.0              | 707.3             |
| 24.0               | 22.4              | 80.0                             | 355.1                  | 99.0              | 733.2             |
| 25.0               | 23.8              | 90.0                             | 525.8                  | 100.0             | 760.0             |
| 26.0               | 25.2              | 91.0                             | 546.0                  | 110.0             | 1074.6            |
| 27.0               | 26.7              | 92.0                             | 567.0                  | 120.0             | 1489.1            |
| 28.0               | 28.3              |                                  |                        |                   |                   |
|                    |                   | Vapor pressure in<br>temperature | creases with<br>; why? |                   |                   |



#### Boiling point and critical point

- **Boiling point:** the temperature at which the vapor pressure of the liquid equals the external (atmospheric) pressure.
- Normal boiling point: boiling point at 1 atm.
- **Critical temperature**  $(T_c)$ : the highest temperature at which a liquid can exist.
- The *critical pressure*, *P*<sub>c</sub>, is the vapor pressure at the critical temperature.
- The condition corresponding to a temperature of T<sub>c</sub> and a pressure of P<sub>c</sub> is called the *critical point*.

#### The critical point



|                    | <i>Т</i> <sub>с</sub> , К                                                                                   | P <sub>c</sub> , atm |  |
|--------------------|-------------------------------------------------------------------------------------------------------------|----------------------|--|
| H <sub>2</sub>     | 33.0                                                                                                        | 12.8                 |  |
| $N_2$              | 126.3                                                                                                       | 33.5                 |  |
| $O_2$              | 154.8                                                                                                       | 50.1                 |  |
| CH <sub>4</sub>    | 190.6                                                                                                       | 45.4                 |  |
| $\widetilde{CO}_2$ | 304.2                                                                                                       | 72.9                 |  |
| $C_2H_6$           | 305.4                                                                                                       | 48.2                 |  |
| HC1                | 324.6                                                                                                       | 81.5                 |  |
| $C_3H_8$           | 369.8                                                                                                       | 41.9                 |  |
| NH <sub>3</sub>    | 405.6                                                                                                       | 111.3                |  |
| $SO_2$             | 430.6                                                                                                       | 77.9                 |  |
| H <sub>2</sub> O   | 647.3                                                                                                       | 218.3                |  |
|                    | These four gases can't be liquefied<br>at room temperature, no matter<br>what pressure is applied; why not? |                      |  |

#### Phase changes

- **FUSION** is the reverse of **MELTING** which is the transition of a solid to a liquid, as you know
- *Melting point* and *freezing point* are the same temperature, just different direction (warming or cooling)
- **Enthalpy of fusion**,  $\Delta H_{fus}$ , is the quantity of heat required to melt a set amount (one gram, one mole) of solid.
- Sublimation- going directly from solid to gas
- Examples? (should know 3 for SAT II)
- Remember the Jack Black/Ben Stiller movie *Envy*?
- **Enthalpy of sublimation**,  $\Delta H_{sub}$ , is the sum of the enthalpies of fusion and vaporization.
- **TRIPLE POINT**: all three phases—solid, liquid, vapor—are in equilibrium.

#### Some enthalpies of fusion

#### Table 11.4 Some Enthalpies (Heats) of Fusion

| Substance                                   | Melting Point, °C | $\Delta H_{fusion}$ , kJ/mol |
|---------------------------------------------|-------------------|------------------------------|
| Mercury, Hg                                 | -38.9             | 2.30                         |
| Ethanol, CH <sub>3</sub> CH <sub>2</sub> OH | -114              | 5.01                         |
| Water, $H_2O$                               | 0.0               | 6.01                         |
| Benzene, $C_6H_6$                           | 5.5               | 9.87                         |
| Silver, Ag                                  | 960.2             | 11.95                        |
| Iron, Fe                                    | 1537              | 15.19                        |

Copyright © 2005 Pearson Prentice Hall, Inc.

#### Cooling curve for water



Copyright © 2005 Pearson Prentice Hall, Inc.

#### Heating curve for water



Time (not to scale)

#### Phase diagram

- Shows phases of a substance at various temperatures and pressures
- Polymorphs can exist in more than one form per phase (examples??)



#### Phase diagram for HgI<sub>2</sub>



#### Phase diagram for CO<sub>2</sub>



#### Phase diagram for $H_2O$



#### Van der Waals forces

- Due to polarizability of electron clouds
- Dispersion forces (induced dipole-induced dipole forces)
- Dipole-dipole forces
- Ion-dipole forces

## Dispersion forces

- ... exist between any two particles.
- Also called *London* forces (after Fritz London, who offered a theoretical explanation of these forces in 1928).
- Dispersion forces arise because the electron cloud is not perfectly uniform.
- Tiny, momentary dipole moments can exist even in nonpolar molecules.
- aka "induced dipole-induced dipole" interactions

#### Dispersion forces illustrated



## Dispersion forces illustrated (cont'd)



## Strength of dispersion forces

- Dispersion force strength depends on polarizability: the ease with which the electron cloud is distorted by an external electrical field.
- The *greater* the polarizability of molecules, the *stronger* the dispersion forces between them.
- Polarizability in turn depends on molecular size and shape.
- Heavier molecule => more electrons => a more- polarizable molecule.
- As to molecular shape ...

#### Molecular shape and polarizability



### Dipole-dipole forces

- A polar molecule has a positively charged "end" (δ+) and a negatively charged "end" (δ-).
- When molecules come close to one another, repulsions occur between like-charged regions of dipoles. Opposite charges tend to attract one another.
- The more polar a molecule, the more pronounced is the effect of dipole-dipole forces on physical properties.

#### Dipole-dipole interactions



# Predicting physical properties of molecular substances

- Intermolecular forces become stronger with increasing molar mass and elongation of molecules.
   In comparing nonpolar substances, molar mass and molecular shape are the *essential* factors.
- Dipole-dipole and dipole-induced dipole forces are found in polar substances. The more polar the substance, the greater the intermolecular force is expected to be.
- Because they occur in *all* substances, dispersion forces must always be considered. Often they dominate.

#### Example

Arrange the following substances in the expected order of increasing boiling point: carbon tetrabromide,  $CBr_4$ ; butane,  $CH_3CH_2CH_2CH_3$ ; fluorine,  $F_2$ ; acetaldehyde,  $CH_3CHO$ .

## Hydrogen bonds

- A *hydrogen "bond"* is an intermolecular force in which:
  - a hydrogen atom that is covalently bonded to a (small, electronegative) nonmetal atom (generally N, O, F) in one molecule ...
  - is simultaneously attracted to a (small, electronegative) nonmetal atom of a neighboring molecule (generally lone pairs of N, O, F).

When Y and Z are small and highly electronegative (N, O, F) ...

... this force is called a hydrogen bond; a special, strong type of dipole– dipole force.

#### Hydrogen bonds in water

Why does ice float? •

bonding

water

pattern.



Copyright © 2005 Pearson Prentice Hall, Inc.

#### Hydrogen bonding in ice



#### Hydrogen bonding in acetic acid



## Hydrogen bonding in salicylic acid (aka?)



#### Intermolecular hydrogen bonds

Can you think of other examples?



#### Intramolecular H-bonds (cont'd)



#### Example

In which of these substances is hydrogen bonding an important intermolecular force:  $N_2$ , HI, HF,  $CH_3CHO$ , and  $CH_3OH$ ? Explain.

## Homology

- A series of compounds whose formulas and structures vary in a regular manner also have *properties* that vary in a predictable manner.
- This principle is called *homology*.
- Example: both densities and boiling points of the straight-chain alkanes increase in a continuous and regular fashion with increasing numbers of carbon atoms in the chain... a homologous series.
- Trends result from the regular increase in molar mass, which produces a fairly regular increase in the strength of dispersion forces.
- Different from an element which can exist in more than one basic structure known an an *allotrope*.

#### **An Estimation Example**

The boiling points of the straight-chain alkanes pentane, hexane, heptane, and octane are 36.1, 68.7, 98.4, and 125.7 °C, respectively. Estimate the boiling point of the straight-chain alkane decane.

#### Liquid crystals

- The thrust of your instructor's thesis
- Not quite solid, not quite liquid....a true 5th phase of matter

## Crystals

- A solid substance with a regular shape and plane surfaces with sharp edges that intersect at fixed angles.
- Made up of a small number of atoms, ions, or molecules in a repeating unit.
- The repeating unit in the *crystal lattice* is the *formula unit*.

## Other stuff

- Surface tension (this is how Rain-X<sup>©</sup> works)- OMIT
- Viscosity- OMIT
- Network covalent solids- example: C<sub>60</sub> which is another allotrope of carbon
- Ionic bonds- just common sensestrength of interaction increases as charges increase and distance decreases- OMIT
- Crystals- OMIT