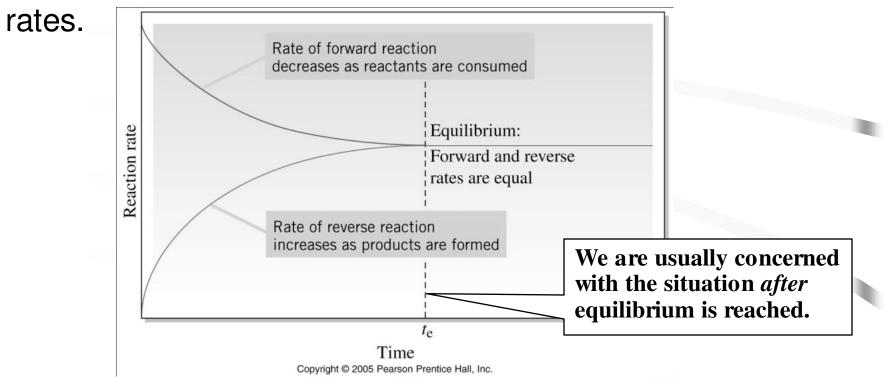

Professor K

Equilibria

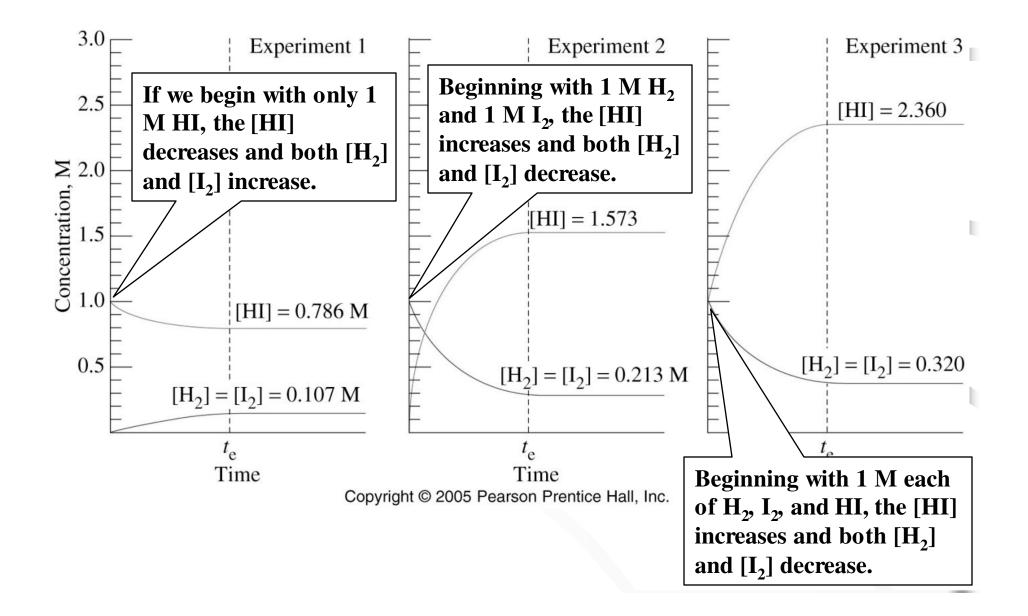
Equilibria

- We have mentioned the dynamic nature of a reaction at equilibrium several times before, and now explore the topic in detail
 - In an equilibrium, the forward and reverse processes are occurring at the same rate
 - Reactant and product concentrations are constant
 - The dynamic nature of an equilibrium (eq) can be demonstrated using radioactive tracers (why?)


Dynamic eq. illustrated

Copyright © 2005 Pearson Prentice Hall, Inc.

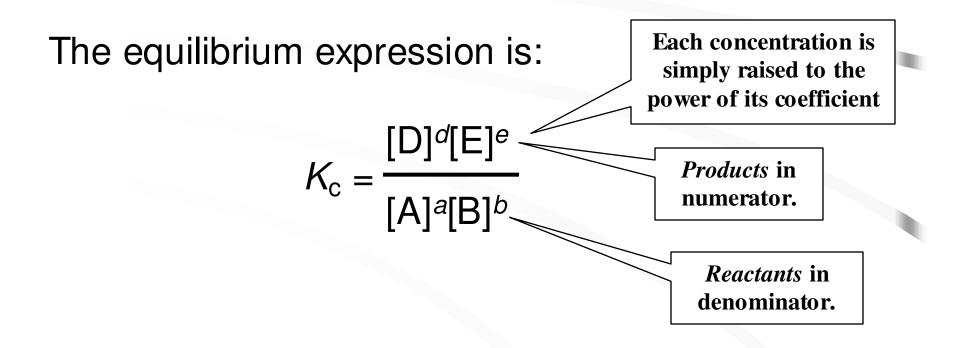
Dynamic nature of equilibrium


When a system reaches *equilibrium*, the forward and reverse reactions continue to occur ... but at equal

After equilibrium the concentrations of reactants and products remain constant.

able 14.1 Th	ree Experiments In	volving the Reaction	2 HI(g) 🥽	= H ₂ (g) + I ₂ (g)	g) at 698 K
Experiment Number	Initial Concentrations, M	Equilibrium Concentrations, M	[H ₂][I ₂] [HI]	[H ₂][I ₂] 2 [HI]	[H ₂][I ₂] [HI] ²
1	[HI]: 1.000 [H ₂]: 0.000 [I ₂]: 0.000	0.786 0.107 0.107	0.0146	0.00728	0.0185
2	[HI]: 0.000 [H ₂]: 1.000 [I ₂]: 1.000	1.573 0.213 0.213	0.0288	0.0144	0.0183
3	[HI]: 1.000 [H ₂]: 1.000 [I ₂]: 1.000	2.360 0.320 0.320	0.0434	0.0217	0.0184
	Copyr	ight © 2005 Pearson Prentic	e Hall, Inc.		
Regardless of the starting concentrations; once equilibrium is reached		in d	the expression with products in numerator, reactants in denominator, where each concentration is raised to the		
			power of its coefficient, appears to give a constant.		

Concentration vs. time



Equilibrium constants

- Product concentrations divided by reactant concentrations gives the EQUILIBRIUM CONSTANT EXPRESSION or equation
- Ex: for $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \Leftrightarrow 2 \operatorname{NO}_2(g)$, Kc = $[\operatorname{NO}_2]^2 / [\operatorname{NO}]^2 [\operatorname{O}_2] = 4.67 \times 10^{13}$
- Exponents equal the stoichiometric coefficients
- Given some of the variables, you can solve for the missing one

The equilibrium constant expression For the general reaction:

 $aA + bB \rightarrow dD + eE$

Reaction rates at equilibrium

- For the previous reaction, the forward rate = $k_f[NO]^2 [O_2]$ where k is the rate
- The reverse rate = $k_r[NO_2]^2$
- At eq, forward rate = reverse rate
- So, the equilibrium constant $K_{eq} = k_f / k_r$
- Effect of reversing equation or multiplying whole system by a number
- For multi-step reactions, the overall rate depends only upon the slow step

The condition of equilibrium

• The kinetics view:

 $K_{\rm c}$ = (forward rate)/(reverse rate) = $k_{\rm f}/k_{\rm r}$

- The thermodynamics view:
 - The equilibrium constant can be related to other fundamental thermodynamic properties and is called the *thermodynamic equilibrium constant*, K_{eq}.
 - The thermodynamic equilibrium constant expression uses dimensionless quantities known as *activities* in place of molar concentrations.
 - We will not focus on this topic in any detail

Modifying the chemical eq.

Consider the reaction: $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{NO}_2(g)$

$$K_{\rm c} = \frac{[\rm NO_2]^2}{[\rm NO]^2 [\rm O_2]} = 4.67 \times 10^{13} (\text{at } 298 \text{ K})$$

Now consider the reaction: $2 \operatorname{NO}_2(g) \implies 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$

What will be the equilibrium constant K'_{c} for the new reaction?

$$\boldsymbol{K'_{c}} = \frac{[\text{NO}]^{2} [\text{O}_{2}]}{[\text{NO}_{2}]^{2}} = \frac{1}{\frac{[\text{NO}_{2}]^{2}}{[\text{NO}_{2}]^{2}}} = \frac{1}{\boldsymbol{K_{c}}} = \frac{1}{4.67 \times 10^{13}} = 2.14 \times 10^{-14}$$

Modifying the chemical eq. (cont'd)

Consider the reaction: $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{NO}_2(g)$

$$K_{\rm c} = \frac{[\rm NO_2]^2}{[\rm NO]^2 [\rm O_2]} = 4.67 \times 10^{13} \text{ (at 298 K)}$$

Now consider the reaction: $NO_2(g) \implies NO(g) + \frac{1}{2}O_2(g)$

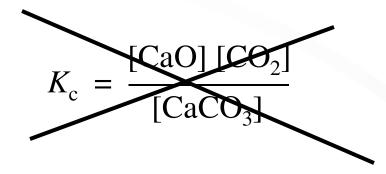
What will be the equilibrium constant K''_{c} for the new reaction?

$$\boldsymbol{K''}_{\mathbf{c}} = \frac{[\text{NO}] [\text{O}_2]^{1/2}}{[\text{NO}_2]} = \left[\frac{1}{K_{\mathbf{c}}}\right]^{1/2} = \sqrt{2.14 \times 10^{-14}} = 1.46 \times 10^{-7}$$

Modifying the chemical eq.- summary

- For the reverse reaction, *K* is the *reciprocal* of *K* for the forward reaction.
- When an equation is divided by two, *K* for the new reaction is the *square root* of *K* for the original reaction.
- General rule:
 - When the coefficients of an equation are multiplied by a common factor <u>n</u> to produce a new equation, we raise the original K_c value to the <u>power n</u> to obtain the new equilibrium constant.
- It should be clear that we must write a balanced chemical equation when citing a value for K_c .

The equilibrium constant for an overall reaction Suppose we need: $N_2O(g) + 3/2 O_2(g) \implies 2 NO_2(g) \quad K_c(1) = ??$ and we're given:


 $N_2O(g) + \frac{1}{2}O_2(g) \implies 2 NO(g)$ $K_c(2) = 1.7 \times 10^{-13}$ $2 NO(g) + O_2(g) \implies 2 NO_2(g)$ $K_c(3) = 4.67 \times 10^{13}$

- **Adding** the given equations gives the desired equation.
- *Multiplying* the given values of *K* gives the equilibrium constant for the overall reaction.
- (To see why this is so, write the equilibrium constant expressions for the two given equations, and multiply them together. Examine the result ...)

Reaction rates at equilibrium (cont'd)

- Partial pressures can be used in place of concentrations for gas equations
- Pure solids and liquids DO NOT appear in equilibrium constant expressions since their CONCENTRATIONS don't change during the reactions (AMOUNTS of course change, but not concentrations)
- Extreme values for K indicate non-reversible reactions

Example: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

 $K_{\rm c} = [{\rm CO}_2]$

Equilibrium constants— when do we need them, and when do we not?

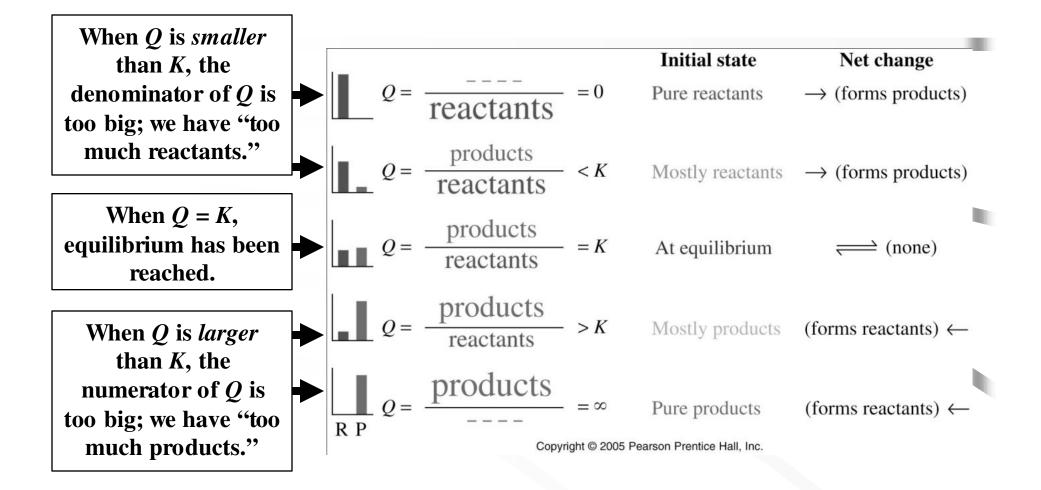
- A very *large* numerical value of K_c or K_p signifies that a reaction goes (essentially) to completion.
- A very *small* numerical value of K_c or K_p signifies that the forward reaction, as written, occurs only to a slight extent.
- An equilibrium constant expression applies only to a reversible reaction *at equilibrium*.
- Although a reaction may be *thermodynamically favored*, it may be *kinetically controlled* ...
- Thermodynamics tells us "it's possible (or not)"
- Kinetics tells us "it's practical (or not)"

Equilibria involving gases

- In reactions involving gases, it is often convenient to measure partial pressures rather than molarities.
- In these cases, a *partial pressure equilibrium constant*, K_p , is used. $(P_C)^g (P_M)^h$

$$K_{\rm p} = \frac{(\Gamma_{\rm G})^{\circ}(\Gamma_{\rm H})^{\circ}}{(P_{\rm A})^{a}(P_{\rm B})^{b}}$$

 $K_{\rm c}$ and $K_{\rm p}$ are related by: $K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n(gas)}$

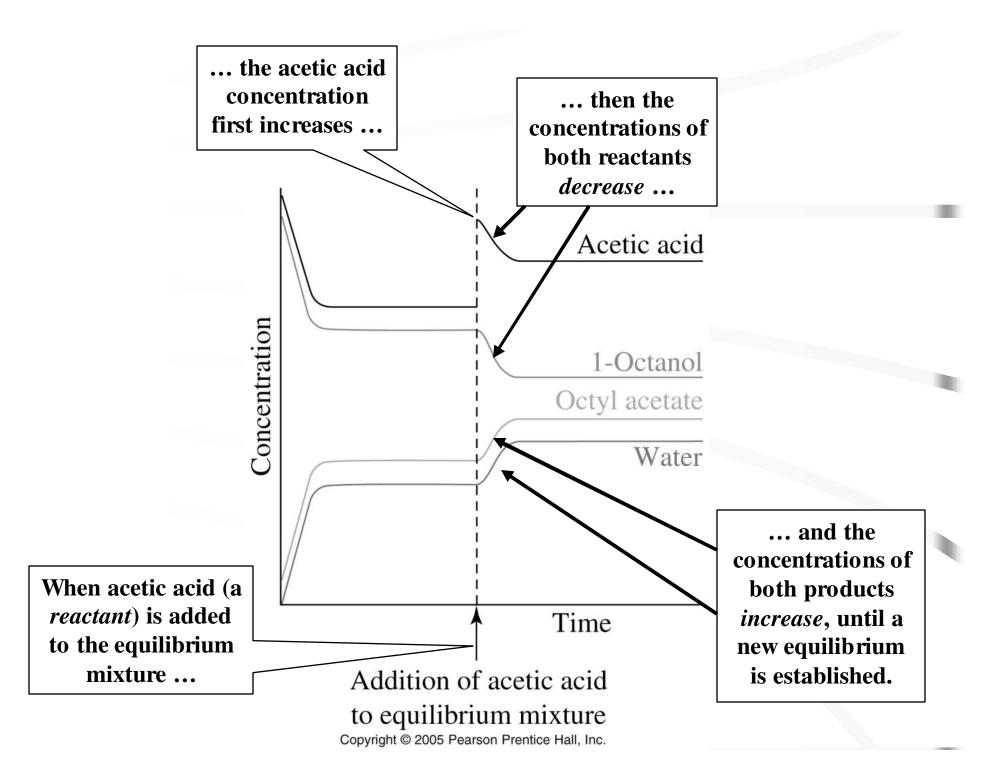

where $\Delta n(gas)$ is the change in number of moles of gas as the reaction occurs in the forward direction.

 $\Delta n(gas) = mol gaseous products - mol gaseous reactants$

Reaction quotient

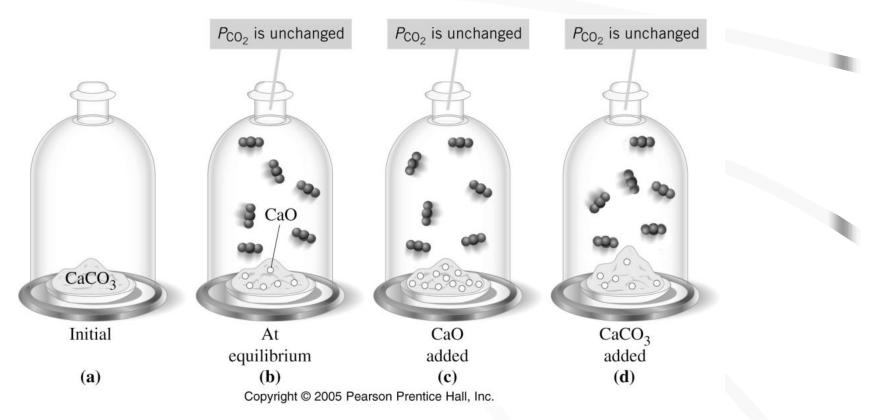
- An examination of the K type for a reaction NOT at eq
- For *non*equilibrium conditions, the expression having the same form as K_c or K_p is called the *reaction quotient*, Q_c or Q_p.
- The reaction quotient is not constant for a reaction, but is useful for *predicting the direction* in which a net change must occur to establish equilibrium.
- To determine the direction of net change, we compare the magnitude of Q_c to that of K_c .

Q(cont'd)



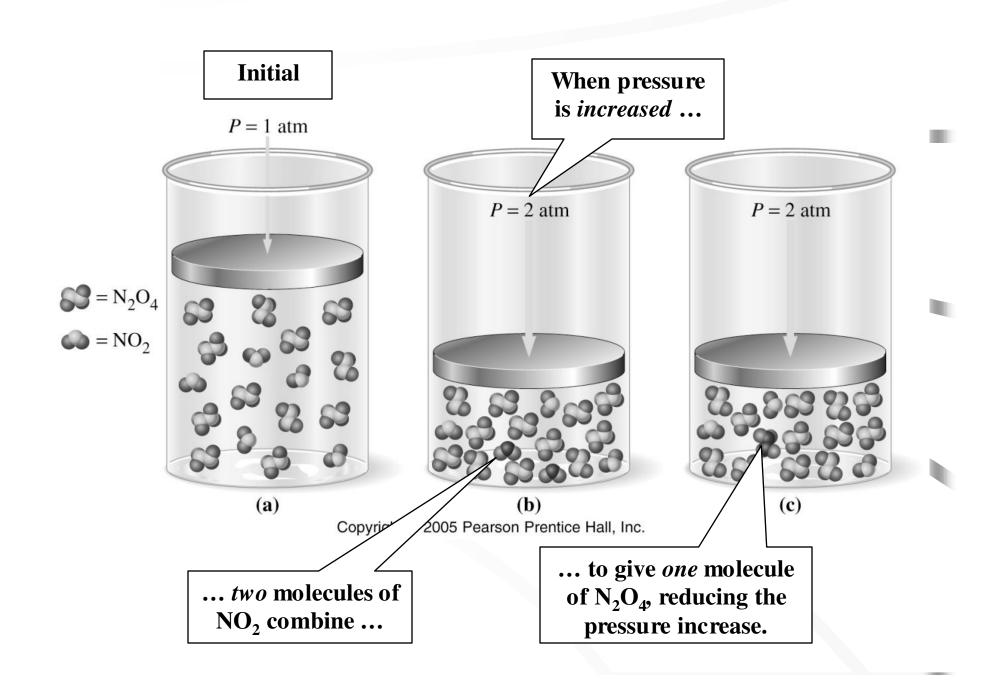
LeChatelier's principle

- A stress placed on a reaction system at equilibrium is minimized
- Addition of products or removal of products
- Changing pressure (4 slides ahead)
- Changing temperature
- Addition of catalyst
 - A common word very few understand...
 - Enzymes


Changing the amounts of reacting species

- At equilibrium, $Q = K_c$.
- If the concentration of one of the *reactants* is increased, the *denominator* of the reaction quotient increases.
- Q is now less than K_c.
- This condition is only temporary, however, because the concentrations of all species must change in such a way so as to make $Q = K_c$ again.
- In order to do this, the concentrations of the products increase; the reaction is shifted to the right.

Heterogeneous eq. and Le Chatelier's principle


 Addition or removal of pure solids or pure liquids from a system at equilibrium does *not* affect the equilibrium.

Changing external P or V in gaseous eq

- When the external pressure is *increased* (or system volume is reduced), a reaction shifts in the direction producing the *smaller* number of moles of gas.
- When the external pressure is *decreased* (or the system volume is increased), a reaction shifts in the direction producing the *larger* number of moles of gas.
- If there is no change in the number of moles of gas in a reaction, changes in external pressure (or system volume) have no effect on an equilibrium.

Example: $H_2(g) + I_2(g) \longrightarrow 2 HI(g)$ equilibrium is unaffected by pressure changes.

T changes and catalysis

- Raising the temperature of an equilibrium mixture shifts equilibrium in the direction of the endothermic reaction; lowering the temperature shifts equilibrium in the direction of the exothermic reaction.
 - Consider heat as though it is a product of an exothermic reaction or as a reactant of an endothermic reaction, and apply Le Châtelier's principle.
- A catalyst lowers the activation energy ... of both the forward and the reverse reaction.
- Adding a catalyst does not affect an equilibrium state.
- A catalyst merely causes equilibrium to be achieved faster.

Determining values of eq constants experimentally

- When initial amounts of one or more species, and equilibrium amounts of one or more species, are given, the amounts of the remaining species in the equilibrium state and, therefore, the equilibrium concentrations often can be established.
- A useful general approach is to tabulate under the chemical equation:
 - the concentrations of substances present initially
 - changes in these concentrations that occur in reaching equilibrium
 - the equilibrium concentrations.
- This sort of table is sometimes called an "ICE" table: Initial/Change/Equilibrium.

Calculating eq quantities from Kc and Kp values

- When starting with initial reactants and no products and with the known value of the equilibrium constant, these data are used to calculate the amount of substances present at equilibrium.
- Typically, an ICE table is constructed, and the symbol *x* is used to identify one of the changes in concentration that occurs in establishing equilibrium.
- Then, all the other concentration changes are related to x, the appropriate terms are substituted into the equilibrium constant expression, and the equation solved for *x*.